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In this survey we discuss models with level
dependent and stochastic volatility
from the viewpoint of derivative asset analysis	 Both classes of models are gen

eralisations of the classical Black
Scholes model� they have been developed in an
e�ort to build models that are �exible enough to cope with the known de�cits
of the classical Black
Scholes model	 We start by brie�y recalling the standard
theory for pricing and hedging derivatives in complete frictionless markets and
the classical Black
Scholes model	 After a review of the known empirical con

tradictions to the classical Black
Scholes model we consider models with level

dependent volatility	 Most of this survey is devoted to derivative asset analysis
in stochastic volatility models	 We discuss several recent developments in the
theory of derivative pricing under incompleteness in the context of stochastic
volatility models and review analytical and numerical approaches to the actual
computation of option values	

�� Introduction

Over the last �� years the classical Black�Scholes model has proven to be a
very e�ective tool for the valuation and the risk�management of derivative
securities� and even today most of the trading activity on markets for equity
and currency options is based on this model� Nonetheless� in recent years
a number of empirical observations have been compiled that are di�cult to
reconcile both with the assumptions the model imposes on the price process of
the underlying asset and with the predictions the model makes on the behaviour
of option prices� To mention only a few of these issues that currently mark many
debates in derivative asset analysis� most time series of asset returns are said to
exhibit 	excess kurtosis
 and 	fat tails
 and on options markets we encounter
	smile
 or 	skew
 patterns of implied volatility�
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Researchers have therefore attempted to build new option pricing models
that are �exible enough to cope with these empirical facts� A good deal of this
research concentrates on relaxing the stringent and unrealistic assumption of
constant volatility imposed on the price process of the underlying security� Ba�
sically the continuous�time approaches to a more re
ned volatility modelling
can be divided into two classes� The deterministic volatility models �DV�
models� take the volatility to be a function of the price level of the underlying
security whereas the stochastic volatility models �SV�models� assume that the
volatility is itself given by a stochastic process that is only imperfectly corre�
lated with the asset price process�

In this survey we discuss both approaches from the viewpoint of derivative
asset analysis� We are mainly concerned with the derivation and computation of
prices and hedge portfolios for options and with an analysis of their qualitative
properties� Our focus is on models which are set up in continuous time� but we
brie�y treat discrete�time GARCH�models as these are both helpful tools for
the estimation of continuous�time models and interesting models in their own
right�

We start our analysis in Section � by brie�y recalling the standard theory
for pricing and hedging derivatives in complete and frictionless markets and
apply this theory in the framework of the Black�Scholes model� This Section
serves several purposes� It is a quick introduction for the 	newcomer
 to the

eld� Moreover� it illustrates that option pricing formulae such as the cele�
brated Black�Scholes formula hinge on several strong assumptions on the price
processes of the underlying assets� To the extent that these are violated simply
applying the recipes of standard option pricing theory may lead to answers
which are nonsensical from an economic viewpoint and which may have severe
consequences for the practioner who does not take the necessary care when
applying a particular option pricing model�

In Section � we discuss more thoroughly the empirical evidence contra�
dicting underlying assumptions and predictions of the classical Black�Scholes
model� We then go on and study the class of deterministic volatility models in
Section �� Here we are mainly interested in the so�called implied deterministic
volatility models proposed for instance by Dupire ���� and Rubinstein �����
In these models one tries to determine a volatility function for the price process
of the underlying asset in order to 	
t
 the prices of traded option contracts�
The models thus obtained can then be used for the pricing and hedging of more
complex derivatives� The main virtue of this class of models is completeness��

conceptual di�culties concerning the way options should be priced and hedged
do therefore not arise in this framework�

As most of the recent extensions of the classical Black�Scholes model belong
to the class of stochastic volatility models� we devote the greatest part of this
survey to the study of derivative asset analysis in this class of models� We
start by introducing di�erent popular speci
cations from the recent literature

� A model for the price process of the underlying security is termed complete if every deriva�
tive contract can be replicated by a dynamic trading strategy�
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in Section �� We introduce certain GARCH�models and discuss the convergence
of GARCH�models to continuous�time di�usions�

In Section ��� we consider the conceptual problems for derivative asset
analysis in SV�models� We show that there is a price to pay for the increase
in realism gained by modelling volatility as a stochastic process� stochastic
volatility models are typically incomplete� and there are many possible price
processes for an option that are consistent with no arbitrage� We demonstrate
by means of an example that arbitrage pricing alone may be of no help when
it comes to restricting the range of possible option prices� This casts some
doubts on the stochastic volatility option pricing models proposed in the Fi�
nance literature where one of the price processes consistent with no arbitrage
is picked more or less ad hoc� Moreover� the problem of hedging derivatives
is not adressed in this literature� As this is a key issue for practioners we re�
view two approaches to derivative asset analysis in incomplete markets that
are based mainly on hedging arguments� namely superreplication as introduced
by El Karoui and Quenez ���� and �local� risk minimization as developed in
F�olmer and Schweizer ���� and related papers�

In the theory of superreplication one seeks to 
nd the cheapest sel�nancing
trading strategy that yields a terminal payo� no smaller than the payo� of
the derivative one wants to cover� Using a deep result from El Karoui and
Quenez ���� we show that in the case of certain SV�models with unbounded
volatility there exists only a trivial superreplication strategy� Therefore� at least
for these models� superreplication in the sense of El Karoui and Quenez ����
does not seem to be a viable approach to the hedging of derivatives�

The theory of local risk minimization seeks to determine a trading strategy
in the underlying asset that reduces the risk of a derivative to its 	intrinsic
component
� While the 	hedgeable part
 of a derivative can be priced by stan�
dard replication arguments� economic equilibrium arguments or concepts from
insurance pricing are needed to 
nd a price of the 	cost process
 that repre�
sents the intrinsic risk of the derivative� We show that the general recipe for
the computation of locally risk minimizing hedging strategies given in F�olmer
and Schweizer ���� is easily applied to SV�models and yields very intuitive
results� In doing so we moreover take the chance to correct a minor error of
Hofmann� Platen� and Schweizer �����

Section ��� forms the core of this paper� It presents a view on derivative
analysis in SV models that is rarely taken in the literature on option pricing
under stochastic volatility and it contains in addition some new results�

We discuss several approaches to the actual computation of option prices
in section ���� Here we review both� theoretical and analytical approaches� We
conclude our analysis of option pricing under stochastic volatility by collecting
evidence on the qualitative behaviour of option prices in SV�models� It turns
out that these prices exhibit the same qualitative properties than do the ob�
served prices of traded option contracts� This gives some hope that SV models
might be a useful tool for the risk�management of derivatives�

We do not devote much attention to the estimation of SV�models and sketch
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only one possible approach� This is not meant to imply that this is an unin�
teresting or unimportant topic� it is simply due to the fact that the author�s

eld of expertise lies elsewhere� For further information on the estimation of
SV�models and more generally the estimation of di�usion models from discrete
observations see for example Dacunha�Castelle and Florens�Zmirou ����
or the survey articles G�oing ����� Shepard ����� Ait�Sahalia ��� and Ghy�
sels� Harvey� and Renault ����� Another interesting survey on option pric�
ing under stochastic volatility is Hobson ����� As in our paper the latter article
considers mainly the pricing of options in SV�models� The author does not ad�
dress the issue of option pricing under incompleteness in great detail� but he
is more explicit about the estimation of SV�models than we are� in particular
this article contains an excellent bibliography on this subject�

�� Pricing and Hedging Derivatives � Standard Theory

We start our survey by brie�y reviewing the standard theory for the pricing of
derivative securities such as options� Our exposition largely follows F�ollmer
����� We consider a market where a risky asset� in the sequel simply referred to
as the stock� and some riskless bond or money market account B are traded�
The price �uctuations of the stock are described by some stochastic process
X � �Xt���t�� which is de
ned on some 
ltered probability space ���F � P ��
�Ft�t��� For simplicity we assume that Bt � � for all t � ��� A typical model
for the price process of the risky asset is the generalized Black�Scholes model
where X is given by the solution of the following SDE

dXt � ��t�Xt�Xtdt� ��t�Xt�XtdWt � ���

HereW is a standard BrownianMotion on ���F � P � and � and � are su�ciently
smooth such that there is a unique solution to ��� which is moreover strictly
positive� When talking of a generalized Black�Scholes model we shall always
assume that �Ft�t�� is the 
ltration generated by the Brownian motion W �
The model ��� has the following intuitive interpretation� at a given point in
time ��t�Xt� describes the instantaneous growth rate of the asset� while the
volatility ��t�Xt� measures the instantaneous variance of the return process
lnX � Hence ��t�Xt� can be interpreted as �local� measure of the risk incurred
by investing one unit of the money market account into the stock� In case
that ��t� x� is a constant or at most a function of time model ��� is termed the
classical Black�Scholes model�

Now imagine an investor such as a bank who considers selling a contingent
claim� i�e� a FT �measurable random variable �H � �H is interpreted as payo� at
date T of some 
nancial contract� Typically �H is a derivative asset� i�e� the
value of �H is determined by the realisation of the price path of X � The most

� This assumption does not exclude nonzero interest rates from our analysis� if we interprete
X as forward price process of the stock� i�e� if we choose the bond as numeraire� For
a general discussion of the role of numeraires in derivative asset pricing theory see for
instance El�Karoui� Geman and Rochet �����
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popular examples are European call and put options with maturity date T and
exercise price K where �H � �XT �K�� or �H � �K �XT �

�� respectively� As
�H is typically unknown at date t � � such a contingent claim constitutes a
risk� Therefore two questions arise for our investor� How should he price the
claim and how should he deal with the risk incurred by selling the contract 
The 	modern
 answer to these questions dates back to the seminal papers by
Black and Scholes ��� and Merton ����� They showed that under certain
assumptions the payo� of a derivative security can be replicated by a dynamic
trading strategy in the underlying asset� such that its risk can be eliminated�
This concept of dynamic hedging� which can be carried over to more sophis�
ticated models than ���� and not the celebrated Black�Scholes formula which
holds only in the classical Black�Scholes model should be viewed as major con�
tribution of these papers�

Let us now explain their argument in more detail� Assume that the asset
price process X admits an equivalent martingale measure Q� i�e� a probability
measure with the same nullsets as P such that X is a Q�martingale� This
assumption excludes arbitrage opportunities from our model�� Moreover it en�
sures that X is a P �semimartingale such that we may de
ne stochastic integrals
with respect to X �

Now consider a dynamic trading strategy ��� �� where �t gives the amount
held in the risky asset at time t and �t gives the position in the bond� Of course
our position at t should depend only on information available up to time t� that
is we require � to be predictable and � to be adapted with respect to �Ft�t���
At time t the value of our hedge portfolio equals

Vt � �tXt � �t � ���

As Bt � � the cumulated gains from trade of following this strategy up to time
t are measured by the stochastic integral

R t
�
�sdXs� Hence the cumulative cost

Ct from following this strategy up to time t is given by

Ct � Vt � V� �
Z t

�

�sdXs � ���

The strategy will be called sel�nancing if the cumulative cost is zero� i�e� if
we have

Vt � V� �

Z t

�

�sdXs for all � � t � T � ���

Suppose now that our contingent claim can be represented as a stochastic

integral with respect to X � i�e� �H � H� �
R T
�
�Hs dXs� Then we may construct

a dynamic hedging strategy for H as follows� De
ne

� Roughly speaking an arbitrage opportunity is a sel	nancing strategy with zero initial
investment and a nonnegative value process Vt with P �VT � 
� � 
� Absence of arbitrage
opportunities is known to be �essentially equivalent� to the existence of an equivalent
martingale measure� There is a long literature on this subject starting with Harrison and
Kreps �

� and culminating in Delbaen and Schachermayer �����
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� � �
�H and �t � H� �

Z t

�

�
�H
s dXs � �

�H
t Xt � ���

This strategy is sel�nancing with value process V
�H
t � H� �

R t
� �

�H
s dXs� In

particular V
�H
T � �H � Therefore� at any time t � T we can replicate the claim

by starting with an investment of V
�H
t and following the above strategy� There

are no further payments and hence no further risks� This implies that at time
t the fair price of the claim should be equal to V

�H
t �

Harrison and Pliska ���� proposed the following shortcut to computing

V
�H
t � Under certain integrability conditions the stochastic integral

R t
� �

�H
s dXs is

a Q�martingale and hence

EQ

�Z T

t

�
�H
s dXs

�� Ft
�
� � for all t �

This yields the so�called risk�neutral pricing rule for the claim �H

Ht �� V
�H
t � EQ� �H

�� Ft� � ���

in particular the fair price process H � �Ht���t�T is a Q�martingale� Harrison
and Pliska moreover showed that the market is complete� i�e� everyQ�integrable
claim admits a representation as stochastic integral with respect to X � if and
only if there is only one equivalent martingale measure for X �

This elegant approach to pricing and hedging contingent claims hinges on
several crucial hypotheses� Obviously if our argument is to work for all claims
the market must be complete� Moreover� in our de
nition of the gains from
trade we implicitely assumed that there are no market frictions such as taxes
and transaction costs� and that our potential seller is 	small
 compared to the
size of the market� meaning that the implementation of his hedging strategy
doesn�t a�ect the price process of the stock� Much of the recent research in
Finance has concentrated on relaxing these assumptions� We will survey recent
approaches to pricing and hedging of derivatives in incomplete markets in the
course of our analysis of stochastic volatility models in section ���� A represen�
tative example of recent work on transactions costs isBensaid� Lesne� Pages�
and Scheinkman ���� the pricing and hedging of options in markets with a large
trader is for instance studied by Jarrow���� or Frey and Stremme ���� and
Frey �����

Let us now apply the above approach to pricing and hedging derivatives in
the context of the generalized Black�Scholes model ���� De
ne

GT �� exp

�
�
Z T

�

���t�Xt����t�Xt��dWt � �

�

Z T

�

���t�Xt����t�Xt��
�dt

�
�

Under some integrability conditions we have E�GT � � �� In that case we may
de
ne a new probability measureQ onFT by putting dQ�dP �� GT � According
to Girsanov�s theorem� the process X solves under Q the SDE

� For an account of Girsanov�s theorem for Brownian motion and su	cient conditions for
E�GT � � � see for instance Karatzas and Shreve ���� Section �����
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dXt � ��t�Xt�XtdW
Q
t ���

for the Q�Brownian motion WQ
t �� Wt �

R t
� ���s�Xs����s�Xs��ds� Hence X is

a local Q�martingale and a martingale under some integrability assumptions�
If the volatility function ��t� x� is strictly positive� market completeness

follows from the martingale representation theorem for Brownian motion� see
e�g� Karatzas and Shreve ���� Section ��� D�� This theorem ensures that
for any Q�integrable FT measurable random variable �H the martingale Ht �
EQ� �H

�� Ft�� � � t � T can be represented as stochastic integral� i�e� there is

a predictable process 	
�H such that Ht � H� �

R t
�
	

�H
s dWs� If we now de
ne

�
�H
s �� 	

�H
s ����s�Xs�Xs� we immediately get

�H � H� �

Z T

�

	
�H
s

��s�Xs�Xs
��s�Xs�XsdW

Q
s � H� �

Z T

�

�
�H
s dXs �

Now there remains of course the task of computing price and hedging strategy�
For the purposes of this paper it is enough to consider claims whose payo�
has the form �H � g�XT ��

� For those derivatives price and hedge portfolio can
be computed by means of a parabolic partial di�erential equation� Denote by
h�t� x� the solution of the terminal value problem





t
h�t� x� �

�

�
���t� x�x�


�


x�
h�t� x� � �� h�T� x� � g�x� � ���

By It!o�s formula we obtain from ���

g�XT � � h�T�XT � � h�t�Xt� �

Z T

t





x
h�s�Xs�dXs �

Hence �
�H
t � �

�xh�t�Xt� and the fair price of the derivative is given by Ht ��
h�t�Xt��

If we work in the classical Black�Scholes model with only time�dependent
volatility and if g equals the payo� of a European option the PDE ��� can be
solved explicitely� The usual approach is to transform the problem to the heat
equation� see e�g� Willmott� Dewynne and Howison ���� section ����� This
yields the famous Black�Scholes formula for European call options�

h�t� x� � CBS �t � x � ��t� � where

CBS�t� x� ��t� � N �d�t ��KN �d�t � � ��t � �T � t��� �
Z T

t

���s�ds � ���

d�t �
ln �x�K� � �

� �T � t���tp
�T � t���t

� d�t � d�t �
p

�T � t���t � ����

and where Ndenotes the distribution function of the one�dimensional standard
normal distribution� Alternatively one could derive the Black�Scholes formula

� For the pricing of path�dependent options in the framework of the classical Black�Scholes
model see for instance Willmot� Dewynne� and Howison ���� and the references given
therein�
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using probabilistic methods to compute the conditional expectation in ���� For
an application of this approach in a more general setting see for instance Frey
and Sommer ����� If the volatility is a function of the current price of the
risky asset� usually explicit formulas for option prices are no longer available�
See however Miltersen Sandmann� and Sondermann ���� for a notable
exception and certain applications to the pricing of interest rate derivatives�

�� Empirical Evidence Contradicting the Classical Black�Scholes

Model

Over the last �� years the classical Black�Scholes model has proven to be a very
e�ective tool for the valuation and the risk�management of derivative assets�
Nonetheless in the last years a number of observations have been reported
which are at odds with both underlying assumptions and predictions of the
simple model ��� with constant volatility�

Empirical evidence on the price process of the underlying security suggests
that the classical Black�Scholes model does not describe the statistical proper�
ties of most 
nancial time series very well� According to this model the return
over a short period of time should be normally distributed� Now since the early
work of Mandelbrot ���� and Fama ���� researchers have compiled a huge
amount of evidence for excess curtosis in 
nancial time series�	

A casual observation of 
nancial time series also reveals the presence of
volatility clusters� i�e� there are usually periods with high volatility and other
periods where volatility is low� This has lead researchers to develop ARCH
models which are designed to mimic this behaviour� A brief introduction to
these class of models is given in Section ���� for a detailed survey see Boller�
slev� Chou� and Kroner ���� As shown in this survey this class of time series
models has been applied with great success to 
nancial data� We will see in
Section ��� that ARCH models can be considered as discrete�time versions of
stochastic volatility models� In the latter class of models the volatility itself
follows a stochastic process whose innovations are only imperfectly correlated
to the stock returns� Hence the success of ARCH�models can be seen as ev�
idence against the assumptions underlying the classical Black�Scholes model�
Finally many researchers have found evidence for negative correlation between
volatility and stock price movements on equity markets� Following Black ���
this phenomenon is termed the leverage e�ect� Again this evidence contradicts
the assumption of constant volatility�

There are also empirical observations on option prices contradicting the
predictions of the theory� These observations relate to the behaviour of implied
volatilities� Suppose we observe that at time t and a given price level �x of the
underlying asset X an option contract is traded at a certain price c� Then we
may invert the formula ��� to obtain the implied volatility �� of the option�
Formally �� is the positive solution to the equation CBS�t� �x� ��

���� � c� If the

� Roughly speaking this means that the tails of the distribution of the return process are
fatter than those of a normal distribution�
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stock price process actually followed the classical Black�Scholes model� in an
arbitrage�free market these implied volatilities should be independent of exer�
cice price and time to maturity of the traded option contracts and moreover
constant over time� However� implied volatilities seem to vary systematically
with the exercice price� The implied volatility of 	at the money options
 �op�
tions with K � �x� are typically lower than implied volatilities of 	out of the
money
 options or 	in the money options
� This phenomenon� which was 
rst
discovered by Rubinstein ����� is usually termed the 	smile pattern
 of implied
volatility� In many equity markets researchers have also found 	skews
 that is
the implied volatility of put options with K �� �x is signi
cantly higher than
the implied volatility of put options with K �� �x� For more evidence on the
relation between exercice price and implied volatility of traded option contracts
see Rubenstein ���� or Taylor and Xu ���� and the references given in these
papers� Finally implied volatilities also tend to vary stochastically over time�
for instance Harvey and Whaley ���� have shown that implied volatilities
can be described very well by autoregressive models� Again this is at odds
with the predictions of the classical Black�Scholes model�

	� Implied Deterministic Volatility Functions
 Theory and

Empirical Tests

The recent research by Dupire ����� Derman and Kani ���� and Rubinstein
���� concentrates on building models for the price process of X that can 
t a
certain observed smile pattern of implied volatility� These models can then be
used for the pricing and the hedging of exotic options� Here we will describe the
work of Dupire who uses the generalized Black�Scholes model ��� as framework
of his analysis�
 Dupire assumes that at a given point in time t he can observe
prices for European call options for all maturity dates T � t and all exercice
prices K � �� Denote the surface of option prices by C�K�T �� K � �� T � t
and assume that C is a smooth function� Dupire�s aim is to show that there
is a unique volatility function ��t� x� such that the observed option prices are
consistent with model ���� He argues in two steps�

First he invokes earlier work by Breeden and Litzenberger ���� to show
that the surface C�K�T � determines for all T � t the Lebesgue�density fT of
the distribution of XT under the risk�neutral measure Q� In fact in our case
the risk�neutral pricing rule yields

C�K�T � �

Z �

�

�x�K��fT �x�dx �

Di�erentiating this with respect to K we get �
�KC�K�T � � � R�

K
fT �x�dx and

hence


�


K�
C�K�T � � fT �K� � ����

� Derman and Kani and Rubinstein are developing discrete�time models that are extensions
of the binomial model of Cox� Ross� and Rubinstein �����
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As a second step Dupire shows that the function ��t� x� can be inferred from
the family �fT �T�t of density functions using the Kolmogorov forward equation�
This is remarkable� as it is well known that in general one�dimensional marginal
distributions are not enough to specify the law of a di�usion process� Under
some regularity conditions the density function of a di�usion process satis
es
the following PDE� which is usually referred to as the Kolmogorov forward
equation� see for instance Karatzas and Shreve ����� equation ���������





T
fT �K� �

�

�


�


K�
�a�T�K�fT �K��� 



K
�b�T�K�fT �K�� � ����

where b is the drift and a is the square of the dispersion coe�cient of the
di�usion� In our case b � �� as X is assumed to be a Q�martingale� Moreover�
a�T�K� � ���T�K� �K�� Hence ���� becomes





T
fT �K� �

�

�


�


K�

�
���T�K�K�fT �K�

�
�

If we integrate this twice with respect to K and use ���� we obtain





T
C�K�T � �

�

�
���T�K�K� 
�


K�
C�K�T � � a�K � a� � ����

Dupire now shows that if the surface of option prices actually stems from an
arbitrage�free di�usion model for the underlying price process we must have
��

�K�C�K�T � � � and a� � a� � �� Hence we may solve ���� for the volatility
function to obtain

���T�K� �
� �
�T C�K�T �

K� ��

�K�C�K�T �
� ����

To price exotic or American options in this model one may now use numeric
methods for PDEs or Monte Carlo simulation as described for instance in
Duffie ����� chapter ��� As an alternative Dupire and Derman�Kani pro�
pose an algorithm to build a discrete�time trinomial tree model incorporating
the information contained in the observed option prices�

The great advantage of the above models with implied deterministic volatil�
ity �IDV�models� is completeness� Hence they allow for the derivation of hedg�
ing strategies and for unique pricing of derivative securities other than call op�
tions in a way that is consistent with an observed smile pattern� Unfortunately
the IDV�models require an exact observation of call prices for more strikes and
maturities than are available on most real options markets� However� this draw�
back can be overcome by using a parametric form for the volatility function or
by using an interpolation algorithm�

The most serious empirical test of the IDV�approach has been carried out
by Dumas� Flemming� and Whaley ����� They consider the major empirical
issue regarding the credibility of the IDV�models� namely the stability over time
of the 	estimated
 implied volatility functions� the volatility function derived

��



from an observed surface of option prices at time t� � h and the volatility
function derived from the option prices observed at time t� should �roughly�
coincide on their common domain of de
nition� As they write� 	in this case
the IDV framework should provide a better means of setting hedge ratios and
valuing exotic options� On the other hand� if the function is not stable it cannot
be claimed that the true volatility function of the underlying asset has been
identi
ed�


Dumas� Flemming� and Whaley ���� 
t di�erent parametric forms for
the implied volatility functions to observed prices of exchange�traded S"P ���
index options� Usually they obtain a very good 
t�� They then use this im�
plied volatility functions to compute the theoretical option prices that should
prevail at the spot level of the S"P ��� index one week later if the implied
volatility function hadn�t changed over time� These values are then compared
to the actually observed prices� It turns out that the discrepancy between
the observed prices and the prices predicted by the model is relatively large�
meaning that at least in this particular case the implied volatility functions
are unstable over time� Interestingly they 
nd that this di�erence between
observed and predicted options prices is larger for complex parametrizations of
the implied volatility functions than for a constant volatility speci
cation� This
is interpreted as evidence that 	more complex volatility speci
cations over
t
the observed structure of option prices�


These 
ndings cast some doubts on whether the IDV approach really is an
improvement over the traditional �theoretically inconsistent� method of using
the Black�Scholes formula with changing volatility� Further testing of this is�
sue is called for� Of course if such research con
rms the results of Dumas�
Flemming� and Whaley ����� the task of 
nding a complete model that is a
better risk�management tool than the classical Black�Scholes formula remains
an important topic for further investigation� There are several interesting new
approaches in this area� Bibby and Sorensen ��� propose a model with level�
dependent volatility where the asset returns follow approximately a hyperbolic
distribution� Kallsen and Taqqu ���� and Hobson and Rogers ���� de�
velop models where the asset price volatility depends on past asset returns�
The volatility dynamics in these models are very similar to the volatility dy�
namics in the celebrated discrete�time GARCH�models� but in contrast to the
latter class of models the models of Kallsen�Taqqu and Hobson�Rogers have
the virtue of being complete�

�� Stochastic Volatility Models

Most of the extensions of the classical Black�Scholes model that have been
proposed in recent years belong to the class of stochastic volatility �SV� mod�
els� Contrary to the approach taken in Section �� in this class of models the
stock price volatility is described by an additional stochastic process whose

� Their �t cannot be perfect as the parametric forms they use have less degrees of freedom
than there are observed options prices�

��



innovations are only imperfectly correlated to the stock price process�

��	� Continuous�Time Models

Following Hofmann� Platen� and Schweizer ���� we consider the following
Markovian model which is general enough to encompass all the continuous�time
stochastic volatility models proposed in the recent literature�

Assumption ���� The evolution of the stock price X can be described by the
following two�dimensional SDE�

dXt � a�t�Xt� vt�Xtdt� ��t�Xt� vt�XtdW��t ����

dvt � b�t�Xt� vt�dt� ���t�Xt� vt�dW��t � ���t�Xt� vt�dW��t � ����

where W� and W� are two independent standard Brownian motions on some
probability space ���F � P �� The 
ltration �Ft�t�� is the augmented 
ltration
generated by the Brownian motions� We assume that the SDE �	��� �	�� has
a unique weak solution� whose 
rst component X is moreover strictly positive�
Finally a�t� x� v� can be decomposed as

a�t� x� v� � ��t� x� v���t� x� v� ����

for a bounded function ��

The process v plays the role of an unobservable state�variable that in�uences
the drift and in particular the volatility of the stock price process� We will
always assume that �� is di�erent from zero� meaning that the state variable
is in�uenced by the second Brownian motion W� which is orthogonal� to the
martingale part of X � The instantaneous covariation between X and v is given
by

���t�Xt� vt���t�XT � vt�Xt �

it vanishes if �� � ��
We now list the stochastic volatility models from the literature and explain

how they 
t into the above framework� The 
rst stochastic volatility model was
proposed by Hull and White ����� These authors assume that ��t � the square
of the volatility� follows a geometric Brownian Motion which is orthogonal to
the martingale part of X � To obtain their model we put

��t� x� v� ��
p
v� b�t� x� v� �� �bv� ���t� x� v� �� � and ���t� x� v� �� 
v ����

for constants �b� 
 with 
 � ��
Wiggins ���� assumes that the logarithm of ��t follows an arithmetic Ornstein�

Uhlenbeck process� To obtain his model we put ��t� x� v� �� exp� ��v�� b � �v��v�
���t� x� v� �� � and ���t� x� v� �� 
 for constants �� �v and 
 with 
 � ��

Scott ���� and Stein and Stein ���� assume that the state variable v
follows the same arithmetic Ornstein�Uhlenbeck�process as in the model of

	 Two �local� martingales are called orthogonal if their quadratic covariation process is zero�

��



Wiggins but they take ��t� x� v� �� jvj� If �v � � their model allows for an
equivalent� more convenient description� We take ��t� x� v� ��

p
v and model

the dynamics of v by the familiar square root process introduced by Cox�

Ingersoll� and Ross ���� as a model for the short�term interest rate�

dvt � �
� � ��vt�dt� �

p
vt dW��t ����

As shown by Ikeda andWatanabe ���� this SDE admits a unique strong solu�
tion which is nonnegative� It can be shown that the law of the two�dimensional
process �Xt� �

�
t ���t�� is the same� no matter which of the two descriptions we

use� Hence from an empirical viewpoint the two models are equivalent� as an
observer is of course con
ned to recording the trajectories of X ��� This clari
es
a point raised by Ball and Roma ����

Heston ���� also works with the speci
cation ��t� x� v� �
p
v and models

the dynamics of v by a square root process� In contrast to all the previous mod�
els he allows for nonzero covariation between X and v� As mentioned in Section
� this is of empirical relevance as many 
nancial time series exhibit signi
cant
negative correlation between returns and volatility innovations� Formally we
obtain Heston�s model by putting

a�t� x� v� �� �v� b�t� x� v� �� � � �v� �� �� �

p
v� �� �� 


p
�� ��

p
v ����

for constants �� �� �� � and 
 with 
 � � and � � ���� �����

Remark� Heston ���� and in particular Duan ���� suggest that # as in
the case of the Stein and Stein ���� model # the model ���� is equivalent
to a model where the dynamics of v are given by an arithmetic Ornstein�
Uhlenbeck process which is driven by W� and W� and where ��t� x� v� �� jvj�
However� if the covariation between X and v does not vanish� by computing the
in
nitesimal generator of �X� ��� it can be shown that the law of the process
�X� ��� obtained in that way di�ers from the law this process obeys in the
Heston model�

��
� GARCH�Models as Di�usion Approximations

We now discuss the approximation of continuous�time SV�models by GARCH
models which are set up in discrete time� This problem was 
rst studied by
Nelson ����� Extensions of Nelson�s results can be found in Duan �����

The approximation results we shall present here are of interest in the study
of continuous�time SV�models for a number of reasons� To begin with such re�
sults are very helpful when it comes to estimating the parameters of SV�models�

�
 With continuous observations of the asset price process an observer can �theoretically�
back out the path followed by ��t from the observed path of the stock price process using
the quadratic variation of X along a suitable sequence of re�ning partitions of the time
axis� see Protter ��
�� chapter ���� However� he is unable to distinguish between the
di�erent models for v� Of course in practice X can be observed only at discrete points in
time� such that even the estimation of ��t poses a serious problem� see Section ��� below�

�� The reason for assuming ��t� x� v� � �
p
v� which contradicts ���� will become apparent in

Section ����

��



In practice we can observe the stock price process only at discrete points in
time� We may now 
t a discrete�time time series model such as a GARCH�
model to our observations� If the time elapsing between the observations is
	small
 an approximation theorem gives some support to using the parame�
ters of the discrete�time model in determining the parameters of the di�usion
model� However� a word of warning is in order� While this procedure seems to
work quite well� see e�g� the discussion in Ghysels� Harvey� and Renault
����� Section ���� it is unclear wether the estimates obtained in this way are
actually unbiased� This is an important topic for research� For further infor�
mation on the estimation of di�usion models from discrete observations see e�g�
Dacunha�Castelle and Florens�Zmirou ���� or the survey articles G�ong
����� Ait�Sahalia ��� and Ghysels� Harvey� and Renault �����

Moreover some authors have recently developed option pricing models where
the price process of the risky asset is given by a GARCH�type model� see e�g�
Amin and Ng ��� or Duan ����� Now the convergence of GARCH�models to
continuous�time SV�models implies that the option prices obtained in these
models are close to the option prices obtained in the limiting di�usion model�
see also section ��� below� Hence we may use the results obtained in the discrete
time framework to draw conclusions concerning the qualitative properties of
option prices in certain continuous�time models� Finally there has always been
some discussion if real�world asset prices are better described by discrete�time
models or by continuous�time models� Approximation results are of interest
here� as they may help to reconcile both approaches� For an in�depth discussion
of results on weak convergence of asset price processes and their signi
cance
for derivative asset analysis see e�g� Duffie and Protter �����

Assume that we are given a sequence of observations �Xtk �k�N of our stock
price process at discrete� equidistant points in time �tk�k�N� De
ne the return
process �Rk�k�N byRk � lnXtk�lnXtk�� � All GARCH�type models considered
in this paper assume the following dynamics for the sequence �Rk�k�N

Rk �
�

�
hk�� �

p
hk����k � �� ����

Here ��k�k�N is an i�i�d sequence of standardized random variables and � is a
constant� Hence hk�� # which is supposed to be known at time tk # equals
the conditional variance of Rk given information up to time tk���

�� The exist�
ing GARCH�models mainly di�er in the speci
cation of the dynamics imposed
on the sequence �hk�k�N� An exhaustive survey of these models is given in
Bollerslev� Chou� and Kroner ���� Here we con
ne ourselves to introduc�
ing the models we need for our analysis of option pricing in stochastic volatility
models� The 
rst GARCH�model in the literature is the linear GARCH�����
�LGARCH��model introduced by Bollerslev ���� Here we have the following
dynamics of h�

�� Note the slightly di�erent parametrization� Most authors denote the conditional variance
of Rk by hk which is taken to be predictable� whereas we denote this variance by hk��
and assume the series �hk�k�N to be merely adapted�

��



hk � �� � ��hk�� � ��hk���
�
k ����

for positive constants ��� ��� ���
The following models have been developed because researchers wanted to

incorporate the correlation between asset return and volatility innovations
into their analysis� Nelson ���� proposed the EGARCH�model �exponential
GARCH� where

lnhk � �� � �� lnhk�� � �� �j�kj �E�j�kj�� � ���k � ����

Here the term ���k takes account of the correlation between asset return and
volatility� Engle and Ng ���� used the following extension of the LGARCH�
model� which is usually referred to as NGARCH�model�

hk � �� � ��hk�� � ��hk����k � c�� � ����

for positive constants ��� ��� ��� For c � � �c � �� returns and innovations of
hk are negatively �positively� correlated� for c � � we are back to the model
�����

We will now of certain GARCH�processes to a limiting di�usion process be�
longing to the class of SV�models� For each n consider a sequence of equidistant
time points � � tn� � � � � � tnk � � � � and suppose that $n �� tnk � tnk�� tends to
zero as n	
� Suppose �Xn�n�N is a sequence of stock price processes where
each process Xn is observed at the sequence �tnk �k�N� Suppose further that
every process Xn follows one of the previously introduced GARCH�models� In
what follows we will identify a sequence �n� � �

n
� � � � � de
ned for times tn� � t

n
� � � � �

with the RCLL �right continuous with left limits� function

�nt ��

�X
k
�

�nk �ftn
k
�t�tn

k��
g ����

This allows us to talk of convergence in distribution on the Skohorod space�
see e�g Ethier and Kurtz ����� chapter ��

The results on the convergence of GARCH models we present here are
due to Nelson ���� and Duan ����� Their results can be proved by applying
Ethier and Kurtz ���� Theorem ������� The essence of this theorem can be
summarized as follows� Suppose that the conditional mean and the conditional
covariance of a given sequence of processes Xn converge after suitable rescal�
ing to certain well behaved functions b and a on R

d � and that the jumps of
Xn converge to zero� Then the sequence Xn converges in distribution to the
solution X of the SDE with drift b�Xt� and with quadratic variation a�Xt�dt�
provided that this equation admits a unique weak solution�

Let us now consider the previously introduced GARCH�models� De
ning
Zn
k �� lnXn

k we get from equation ���� the following dynamics for Zn
k

Zn
k � Zn

k�� �
�

�
� hnk�� �

q
hnk���

p
$n � �nk � �n� � ����

We make the following

��



Assumption ���� As n 	 
 we have �$n��� � �n 	 � for some constant
�� For every n ��nk �k�N is an i�i�d sequence of random variables with variance
equal to �� The distribution of the �nk is symmetric around the origin� has 
nite
moments up to order � and � for simplicity � is independent of n�

Convergence of the EGARCH�model� If we de
ne vnk �� ln�hnk � the
EGARCH speci
cation implies the following form of dynamics for vn�

vnk �� vnk�� � �n� � �n� v
n
k�� � �n� �j�nk j �E�j�nk j�� � �n� j�nk j � ����

where �n� corresponds to �� � � in ����� Now we may state

Proposition ���� Assume that as n	

�

$n
�n� 	 �� �

�

$n
�n� 	 �� �

�p
$n

�n� 	 �� and
�p
$n

�n� 	 ��

for constants ��� � � � � ��� Then the two�dimensional process �Zn
t � v

n
t � obtained

from �Zn
k � v

n
k � via the identi
cation �
�� converges in distribution to the solution

of the SDE

dZt � ��
p
ht �

�

�
ht�dt�

p
htdW��t � ����

dvt � ��� � ��vt�dt� ��dW��t � ��

q
var�j���j�dW��t � ����

where ht is shorthand for exp�vt�� Hence the EGARCH�model yields � under
suitable rescaling � a di�usion approximation to the exponential Ornstein�
Uhlenbeck model proposed for instance by ��	��

Remark� Suppose we are given parameter estimates ��� � � � � �� for the EGARCH
model ���� obtained from discrete� equidistant observations of X � where $t�
the time between two observations is relatively small� We then de
ne estimates
for the di�usion model ���� ���� as follows�

�� � �� � �$t���� �� � ��� � �� � �$t���� �� � �� � �$t������ �� � �� � �$t����� �
Proposition ��� applied to the sequence of EGARCH models with coe�cients
�n� � ���$

n�� � � � � �n� � ���$
n���� tells us that for $t small our estimated

EGARCH model and the di�usion model are close to each other in the sense
of convergence in distribution which supports our choice for the parameters of
the di�usion�
Convergence of the NGARCH�model� Consider a sequence of NGARCH�
models with return dynamics given by equation ���� and Assumption ��� and
with dynamics of the conditional variance given by

hnk � �n� � �n� h
n
k�� � �n� h

n
k����

n
k � cn�� � ����

To guess the form of a possible di�usion limit we decompose ��nk � cn�� into
two uncorrelated random variables as follows

��



��nk � cn�� �
�
��nk �

� � �
�
�
���cn�nk � �cn�� � �

�
�

and introduce new coe�cients �n� � � � � � �
n
� via

�n� � �n� � �
n
� � �n� � � � �n�

�
�cn�� � �

�
� �n� � �n� � �

n
� � �n� ���cn� � ����

Now ���� writes itself in the following form

hnk � hnk�� � �n� � �n�h
n
k�� � �n�h

n
k��

�
��nk �

� � �
�
� �n�h

n
k���

n
k � ����

From this representation we get�

Proposition ��	� Suppose that for n	

�

$n
�n� 	 �� �

�

$n
�n� 	 �� �

�p
$n

�n� 	 �� and
�p
$n

�n� 	 ��

for constants ��� � � � � ��� Then the two�dimensional process �Zn
t � v

n
t � obtained

from �Zn
k � v

n
k � via the identi
cation �
�� converges in distribution to the solution

of the SDE

dZt � ��
p
ht �

�

�
ht�dt�

p
htdW��t � ����

dht � ��� � ��ht�dt� ��htdW��t � ��

q
var������

��htdW��t � ����

The proposition shows that the NGARCH yields a di�usion approximation
to an �extended� Hull�White model� possibly with nonzero covariation between
stock price process and state variable� To obtain an estimate for the coe�cients
of ���� from an estimate ��� ��� ��� c of the parameters of the NGARCH�model
we may proceed as in case of the EGARCH�model� Of course in this case we
must use ���� when de
ning the parameters ��� � � � � �� of the limiting di�usion
model� Note in particular that the sign of the covariation between stock price
process and state variable is entirely determined by the sign of the estimated
parameter c�

�� Pricing and Hedging of Derivatives in SV�Models

��	� Approaches to Derivative Pricing under Incompleteness

While SV�models do a better job in 
tting the behaviour of actual �stock��
market data than DV�models� this increase in realism comes at a cost� SV�
models are incomplete� that is there are derivative assets that cannot be repli�
cated by dynamic trading in stock and bond� As explained in Section � this
is equivalent to the fact that there are now many probability measures Q � P
such that the stock price process is a �local� Q�martingale�

The Set of Equivalent Martingale Measures The next proposition characterizes
the set of all equivalent local martingale measures for the stock price process
de
ned in Assumption ���� For similar results see e�g� Hoffmann� Platen
and Schweizer ���� and the references given therein�

��



Proposition ���� 	� Under Assumption ��	 a probability measure Q that is
equivalent to P on FT is a local martingale measure for X on FT if and only

if there is a progressively measurable process � � ��t���t�T with
R T
� ��sds �


 P a�s� such that the following holds� The local martingale �Gt���t�T with

Gt �� exp
	R t

�
���s�Xs� vs�dW��s

�
R t
� �sdW��s � �

�

R t
� �

��s�Xs� vs� � ��s ds

 ����

satis
es E�GT � � � and we have GT � dQ�dP on FT �

� Suppose that Q is an equivalent local martingale measure corresponding

to some process �� Then X and v solve the following SDE under Q

dXt � ��t�Xt� vt�XtdW
Q
��t ����

dvt � �b�t�Xt� vt�� ���t�Xt� vt���t�Xt� vt� � ���t�Xt� vt��t� dt ����

����t�Xt� vt�dW
Q
��t � ���t�Xt� vt�dW

Q
��t �

The proof is given in Appendix A�

Remark� Sin ���� ��� gives conditions for the solution in ���� to be actually a
martingale �and not only a local martingale�� He shows that for the examples
introduced in Section ��� the martingale property of X is equivalent to the
covariation between X and v being nonpositive�

In the Finance literature the process � is usually referred to as market price
of volatility risk process� Proposition ��� shows that there is a one to one cor�
respondance between market price of volatility risk processes � satisfying some
regularity conditions and equivalent �local� martingale measures� In particular
market incompleteness is equivalent to nonuniqueness of the market price of
risk process�

Let us now turn to the pricing and hedging of derivatives� Here a concep�
tual problem arises� how should we value a contingent claim �H for which a
replicating portfolio does not exist From the viewpoint of arbitrage pricing
theory any price process H � �Ht���t�T with HT � �H is in order� provided
that the two�dimensional price system �X�H� precludes arbitrage opportuni�
ties� Following the fundamental paper by Delbaen and Schachermayer

���� we are 	on the safe side
 if the process �X�H� admits an equivalent local
martingale measure� Hence every price process of the form Ht � EQ� �H jFt�
where Q � P and X is a local Q�martingale is acceptable� provided of course
that �H is Q�integrable� We will therefore call every conditional expectation
EQ��XT �K��jFt� an option value�

The next proposition shows that for certain SV�models only very elemen�
tary bounds on the range of option values can be given� Consider within the
framework of assumption ��� the Hull�White model ����� Denote by Q the set
of all equivalent local martingale measures for X � Then we have the following
result on the range of option values for a European call option with exercice
price K � ��

��



Proposition ���� In the Hull�White model �	�� we have for any � � t � T

sup
Q�Q

EQ
�
�XT �K��jFt

�
� Xt and inf

Q�Q
EQ

�
�XT �K��jFt

�
� �Xt �K�� �

The proof is given in Appendix B� I have chosen to state this result in the frame�
work of the Hull�White model ����� because the corresponding SDE has an ex�
plicit solution which allows for an easy proof� A similar statement should hold
in most SV�models where the stock price volatility is an unbounded process���

However� at least to my knowledge� a formal proof has not yet been given and
even the above proposition is new� Related results on the range of option prices
in a model where lnX follows a Levy�process with unbounded jumps have been
obtained by Eberlein and Jacod �����

Obviously in an arbitrage�free market a call option is always worth less than
the underlying security� On the other hand we know from Merton�s theorem on
the equivalence of European and American options that the price of a European
call on some non�dividend paying asset must exceed the intrinsic value �Xt �
K��� Proposition ��� now tells us that # at least in case of the model ����
# these elementary bounds are the sharpest possible bounds for the range of
option prices consistent with absence of arbitrage�

In light of Proposition ��� we need additional arguments to arrive at a well
determined price for options� Many articles in the Finance literature simply
choose one particular market price of risk process and justify their choice by
# often rather loose # economic equilibrium arguments� For instance it is
often argued that 	volatility risk can be diversi
ed away
 which is used as
a rationale for simply taking �t � �� This approach is taken in the work
mentioned in section ����

The literature on option pricing in a GARCH framework proceeds similarly�
see Duan ���� or Amin and Ng ���� In these models option prices are de
ned as
expected value of the terminal payo�� expectations are taken in a transformed
GARCH model where the return process is given by ���� but with � � � #
hence the asset price process forms a martingale # and where the conditional
variance follows one of the models introduced in Section ���� Again there are
many equivalent martingale measures and equilibrium arguments are used to
justify the choice of a particular 	pricing measure
�

These approaches are not very satisfactory as the arguments justifying the
choice of a particular 	pricing measure
 are often somewhat ad�hoc� Moreover�
the risk�management of derivatives� is not adressed in this literature� As this
topic is of great importance to practioners we will now discuss two approaches
to derivative asset analysis in incomplete markets which are based on hedging
arguments�

Superreplication If the precise duplication of a contingent claim is not feasible
one might try to 
nd a superreplicating strategy� i�e� the 	cheapest
 sel�nanc�
ing strategy with terminal value no smaller than the payo� of the contingent

�� This conjecture is con�rmed by ongoing work of C� Sin and the author�

��



claim� This concept is developed by El Karoui and Quenez ����� To ex�
plain the results of this paper we have to introduce some formal de
nitions�
Remember the de
nition of the cost process C in ����

Definition ���� Consider a contingent claim �H� An adapted RCLL process H
with HT � �H is called an admissible price for sellers� if H is the value process
of some trading strategy ��� �� with nonincreasing cost process� An admissible
price process for sellers H� will be called the ask price for the contingent claim
�H� if we have for any other admissible price process for sellers H and for all
t � ��� T � the inequality H�

t � Ht P a�s��

This de
nition deserves a comment� Suppose that an investor sells at time
t � T the claim �H at an admissible selling price Ht� By following the corre�
sponding portfolio strategy he can then completely eliminate the risk incurred
by selling the claim and moreover he earns the nonnegative amount ��CT�Ct��
Hence he will certainly agree to sell the claim for the price Ht� The following is
an example for an admissible price process for sellers in the case of a European
call option� De
ne

Ht � Xt � �t � � for � � t � T and HT � �XT �K�� � �T � � � ����

The cost process is then given by Ct � � for t � T and CT � �XT �K���XT �
Note that it is not clear that an ask�price for a contingent claim exists� At

least for nonnegative claims combining El Karoui and Quenez ����� Theorem
����� and Theorem ������ yields the following remarkable result�

Theorem ��	� Under Assumption ��	 the ask price process H� exists for every
contingent claim �H whose payo� is bounded below and satis
es supQ�QE

Q� �H � �

� It is given by

H�
t � sup

Q�Q
EQ� �HjFt� �

The crucial point of this theorem is the fact that that the process supQ�Q E
Q

� �H jFt�� which is a natural lower bound for every admissible price process for
sellers� can be represented as sum of a stochastic integral with respect to X and
a nonincreasing process� Theorem ��� holds in very general setups� El Karoui
and Quenez ���� prove it for a general di�usion model� for an extension to
general semimartingales see Kramkov �����

At a 
rst glance superreplication seems to be a very attractive concept for
the pricing and the hedging of derivatives in incomplete markets �in particular
from the viewpoint of risk�management of written derivative contracts�� Un�
fortunately in our SV�framework it may lead to answers which are not very
satisfactory� Remember Proposition ���� There we showed that for some typi�
cal SV�model supfEQ��XT �K��jFt� � Q � Qg � Xt� As a call option satis
es
the hypothesis of Theorem ��� the ask price process and the corresponding
hedge portfolio are given by ����� in other words the superreplicating strategy
for a call option is to buy the stock�

��



Note however� that the idea of superreplication may lead to interesting
results on pricing and hedging derivatives if a priori bounds for the stock price
volatility are known� i�e� if we know that a�s� ��t�Xt� vt� � �� for some constant
�� for all t� In that case the Black�Scholes price for the upper volatility bound
is an admissible price process for sellers� the portfolio strategy is given by the
Black�Scholes strategy corresponding to ��� For a proof and extensions of this
result see the interesting paper Elkaroui� Jeanblanc�Picqu
e and Shreve
�����

�Local� Risk�Minimization Even in an incomplete market a part of the risk
incurred by selling derivatives can be hedged by dynamic trading in the under�
lying asset� In the theory of �local� risk�minimization which has been developed
in the papers F�ollmer and Sondermann ���� Schweizer ���� and F�ollmer
and Schweizer ����� one seeks to 
nd a trading strategy that reduces the ac�
tual risk of a derivative position to some 	intrinsic component�
 While the
computation of the strategy usually involves the computation of 	prices
 for
contingent claims� the focus of this theory is not on the valuation of derivatives
but on the reduction of risk�

Let us now explain this approach in more detail� Recall for a trading strat�
egy ��� �� the de
nition of the cost�process C in ��� and assume that value
process and cost process are square integrable� In the theory of local risk�
minimization the conditional variance of C under the 	real�world
 probability
measure P is used as a measure for the risk of a strategy� For a given claim �H
one tries to determine a strategy ���� ��� with terminal value equal to �H that
minimizes at each time t the remaining risk

Rt �� EP ��CT � Ct�
�jFt�� ����

Here the minimization is over all admissible continuations of ���� ��� after t
with terminal value equal to �H �

F�ollmer and Sondermann ���� have studied existence and uniqueness
of such a strategy if the stock price process is a P �martingale� In that case a
unique risk�minimizing strategy exists� It can be computed by means of the well
known Kunita�Watanabe decomposition�� of the P �martingaleHt � EP � �H jFt�
with respect to the P �martingale X �

Let us now turn to the general situation where X is only a semimartin�
gale under P � As shown by Schweizer ���� in that situation a globally
risk�minimizing strategy need not exist� He therefore introduces a criterion
of local risk�minimization� Roughly speaking a strategy ���� ��� is locally risk�
minimizing if it minimizes the remaining risk over all strategies that 	deviate

from ���� ��� only over a su�ciently short time period� Schweizer ���� shows
that under some technical conditions�� a strategy is locally risk�minimizing if

�� see e�g� Karatzas and Shreve ����� Proposition ��
��

�� Besides certain integrability conditions he assumes that the �nite variation part in the

semimartingale decomposition of X is a continuous process� This condition is satis�ed for
all continuous semimartingales and hence in particular for our SV�models�

��



and only if the associated cost process is a martingale orthogonal to the mar�
tingale part of X � To compute such a strategy we have to 
nd a decomposition
of our claim �H of the following form

�H � H� �

Z T

�

�Hs dXs � LHT � ����

where LH is a P �martingale orthogonal to the martingale part of Xunder P �
Given such a decomposition we may de
ne a locally risk�minimizing strategy
by putting �� �� �H and C �� L� In particular the strategy is still mean�
sel�nancing� i�e� the cost process is a P �martingale and EP �CT � � �� Note
that in the case where X is a P �martingale the decomposition ���� reduces to
the Kunita�Watanabe decomposition of the P �martingaleH with respect to X �
If X is only a semimartingale the decomposition ���� is usually referred to as
F�ollmer�Schweizer decomposition�

In the case where X is a semimartingale with continuous sample paths #
hence in particular in our SV�models # F�ollmer and Schweizer ���� have
proposed the following approach to computing the decomposition ����� As
a 
rst step one has to determine the minimal martingale measure Q�� It is
characterized by the following property�

X is a Q� martingale and every P �martingale that is orthogonal to the
martingale part of X under P remains a martingale under Q��

F�ollmer and Schweizer ���� show that for a contingent claim �H which is
Q��integrable the decomposition ���� is uniquely determined� It exists under
some integrability assumptions and is then given by the Kunita�Watanabe de�
composition of the Q� martingale Ht � EQ� � �H jFt�� � � t � T with respect
to the Q��martingale X � To compute the decomposition ���� one can there�
fore compute this Kunita�Watanabe decomposition under Q� and check the
integrability conditions�

Let us now turn to the application of this recipe in the context of our
SV�models� The minimal martingale measure Q� is the martingale measure
corresponding to a market price of volatility risk process � � �� This follows
either from the property characterizing Q� or from the formula for the density
dQ��dP given by F�ollmer and Schweizer ����� Consider a European call
option� We get from the Markov property of the process �X� v� under Q�

EQ� ��XT �K��jFt� � EQ�

�Xt�vt�
��XT�t �K��� �� g�t�Xt� vt� � ����

Under some regularity conditions on the coe�cients of the di�usion the function
g is smooth� In that case we have

Proposition ���� Suppose that �X� v� satisfy Assumption ��	 and that the
function g de
ned in ��	� is of class C������� T � � R

� �� Then the local risk
minimizing hedge strategy ���� ��� for a European call option is given by

��



��t �




x
g�t�Xt� vt��

���t�Xt� vt�
�
�v g�t�Xt� vt�

��t�Xt� vt�Xt
and ��t � g�t�Xt� vt����tXt����

In particular the value process of this strategy is given by V �t �� g�t�Xt� vt��

Remark� Note that classical $�hedging where �t � �
�xg�t�Xt� vt� is not

optimal in the sense of local risk�minimization whenever the covariation be�
tween X and v is di�erent from zero� ���� also points to a minor error in
F�ollmer� Platen� and Schweizer����� These authors claim that the lo�
cally risk�minimizing hedge�portfolio in a SV�model is always given by �t �
�
�xg�t�Xt� vt� and �t � g�t�Xt� vt� � ��tXt � see equations ����� and ����� of
their paper� As shown above this is wrong whenever �� 
� ��

Proof� As g is of class C������� T � � R
� � we may use It!o�s formula to

obtain the dynamics of g�t�Xt� vt� under Q�� Note that the 
nite variation
terms must cancel as g�t�Xt� vt� is a Q��martingale��	 Using the SDE solved
by �X� v� under Q� �see Proposition ���� yields

�XT �K�� � g�T�XT � vT �

� g��� X�� v�� �

Z T

�





x
g�t�Xt� vt���t�Xt� vt�XtdW

Q�

��t

�

Z T

�





v
g�t�Xt� vt����t�Xt� vt�dW

Q�

��t

�

Z T

�





v
g�t�Xt� vt����t�Xt� vt�dW

Q�

��t

� g��� X�� v�� �

Z T

�

��t dXt

�

Z T

�





v
g�t�Xt� vt����t�Xt� vt�dW

Q�

��t �

We now de
ne theQ��martingaleL by Lt ��
R t
�

�
�v g�s�Xs� vs����s�Xs� vs�dW

Q�

��s �

As WQ�

� and WQ�

� are orthogonal� L is orthogonal to
R t
� �

�
sdXs� This shows

that we have found the Kunita�Watanabe decomposition of the Q��martingale
g�t�Xt� vt� with respect to theQ��martingaleX and hence the F%ollmer�Schweizer
decomposition of our call option�
Remark� Note that we have identi
ed the cost process of our locally risk�
minimizing hedging�strategy in the proof of the above proposition� It is given
by

Ct ��

Z t

�





v
g�s�Xs� vs����s�Xs� vs�dW

Q�

��s ����

�� This yields a parabolic PDE for g which can be used to compute g numerically� see Section
��� below�

��



As the market price of volatility risk process corresponding to Q� is given by

� � � we have the equality WQ�

� � W�� this shows again that C is both a
P �martingale and a Q��martingale�

Often the minimal martingale measure is used for the pricing of contingent
claims� This implies that one associates a price of zero to the claim with payo�
CT � As this claim has zero expected value under P � using Q� for the pricing
of contingent claims implies that the seller has to bear the whole intrinsic
risk of the claim without receiving any compensation for it� When selling
derivatives to clients a market maker could charge the Q��price plus some
markup which might for instance be proportional to the variance of the cost
process� More generally one could use principles from insurance mathematics to
determine a price for the totally unhedgeable claim CT � see ���� for a stimulating
discussion on the interplay of actuarial and 
nancial pricing principles� The
minimal martingale measure could be used for the internal valuation and the
risk�measurement of a book of derivative assets�

In Section ��� we compile some evidence on the qualitative properties of op�
tion prices in SV�models� It turns out that these option prices exhibit the same
qualitative behaviour as market prices for options� Since option traders usually
correct for the known de
cits of the classical Black�Scholes model when quoting
their prices� this gives some hope that the concept of local risk�minimization
applied in the framework of SV�models could be a valuable tool for improv�
ing the risk�management of derivatives� Clearly this is an important issue for
further testing and research�

��
� Computation of Option Values

As every approach to pricing and hedging options in SV�models involves the
computations of option values� we will now survey certain analytical and numer�
ical approaches to computing these conditional expectations� By the Markov
property of our basic SV�model outlined in Assumption ��� it is enough to
consider the computation of expected values EQ ��Xt �K��� where Q is an
equivalent local martingale measure for X �

Analytical Approaches When looking for an analytical solution to this problem
we have to distinguish two cases� First assume that the martingale parts of
volatility process and asset price process are orthogonal and that drift and
dispersion coe�cient of the state variable do not depend on X � In that case
the distribution of XT conditional on the path followed by v is lognormal and
we get

EQ��XT �K��� �

Z
R�

CBS��� X�� ����
Q�d��� � ����

Here CBS��� X�� ��� is the Black�Scholes price of the option as given by ���
and ���� and �Q denotes the distribution of the average variance �� � ��T �R T
� vsds underQ� To compute the expectation ���� one hence has to identify the

��



distribution �Q� In the literature on option pricing under stochastic volatility
several techniques have been proposed for this� Most of the papers concentrate
on computing the moment generating function of �Q� As these approaches are
reviewed in detail by ��� we will not treat them here�

The only contribution that deals with the computation of option values in
a model where X and v are correlated is ����� who works in the model ����� We
now give a slightly simpli
ed version of his derivation of option prices� as this
allows us to review certain arguments that are used over and over in modern
continuous�time derivative asset analysis� We assume that �X� v� follow under
Q the SDE

dXt �
p
vtXtdW��t ����

dvt � �� � &�vt�dt� 

p
vt��dW��t �

p
�� ��dW��t� ����

for constants �� &�� 
 � � and � � ���� ��� We moreover assume that � � 
����
As shown by ����� under this assumption X is a martingale and v is strictly
positive� Note that it follows from Proposition ���� that �X� v� solve the above
SDE if we consider the model ���� under the minimal martingale measure��


We have

EQ��XT �K��� � EQ�XT ��flnXT � lnKg��KEQ��flnXT � lnKg�����

Since X is a strictly positive Q�martingale we have EQ�XT � � X�� Hence we
may de
ne a new probability measure�� QX by putting dQX�dQ �� XT �X�

and get

EQ�XT � �flnXT � lnKg� � X�E
QX ��flnXT � lnKg� �

While the 	exercice probabilities
 in ���� cannot be computed explicitely� it is
possible to give an analytic expression for the characteristic functions �� and
�� of the distribution of lnXT under QX and Q� By de
nition we have

����� � EQX �exp�i� lnXT �� and ����� � EQ�exp�i� lnXT �� �

We deal only with ��� As XT is given by XT � X� exp�
R T
�

p
vsdW��s �

�
�

R T
�
vsds�� Girsanov�s theorem yields the following dynamics for the process

�lnX� v� under QX �

d lnXt �
p
vt�dW

X
��t �

p
vtdt�� �

�
vtdt �

p
vtdW

X
��t �

�

�
vtdt

dvt � �� � &�vt� � 
�vtdt� 

p
vt��dW

X
��t �

p
�� ��dW��t��

where WX
��t �� W��t �

R t
�

p
vsds is a QX�Brownian motion� By the Markov

property the conditional expectation EQX �exp�i� lnXT �jFt� is given by some

�� Essentially this is the rationale behind our choice of the risk premium � in ��
��
�� For a systematic analysis of the role of the measure QX from the viewpoint of the change

of numeraire theory see �����

��



function g��t� lnXt� vt�� obviously ����� � g���� lnX�� v��� Applying It!o�s for�
mula we see that the process g��t� lnXt� vt� can be written as sum of stochastic
integrals with respect to the Brownian motions WX

� and W� and 
nite vari�
ation terms� As the process g��t� lnXt� vt� is a martingale by de
nition� the

nite variation terms must cancel� This yields the following PDE for g��

� �




t
g��t� y� v� �

�

�
v




y
g��t� y� v� ����

� �� � �
�� &��v�




v
g��t� y� v� �

�

�
v

�


y�
g��t� y� v�

� �
v

�


y
v
g��t� y� v�

�
�

�

�v


�


v�
g��t� y� v� � g��T� y� v� � exp�i�y� �

Guided by the form of the solution of the bond price equation in the term
structure model ofCox� Ingersoll andRoss ����� Heston 	guesses
 a solution
of the form

g��t� y� v� � exp�C�T � t� �D�T � t�v � i�x�

for functions C�D � ��� T � 	 R with C��� � D��� � �� Substituting this
candidate solution into the above PDE yields ordinary di�erential equations
for C and D which are solved explicitely in Heston ����� The option value
can now be computed by inverting the characteristic functions �� and �� and
evaluating the exercice probabilities� see again Heston ���� for details�

Numerical Approaches The numerical techniques used for the computation of
option values belong to two groups� On the one hand researchers have used a
Monte�Carlo approach combined with discretization schemes for the SDE �����
���� to compute the option value� Monte�Carlo simulation is a well known
tool in option pricing� a general survey of modern developments is Boyle�
Broadie and Glasserman ����� Techniques for the discretization and numer�
ical solution of SDEs can be found in the book Kloeden and Platen ����� for
an application of these techniques in the context of SV�models see Hofmann�
Platen� and Schweizer ����� Monte Carlo simulations are also always used
for the computations of option values in GARCH�models�

Alternatively researchers have noticed that # at least under some regular�
ity conditions # in Markovian models the option value can be characterized
by a parabolic PDE��� Usually 
nite di�erence methods are used for solving
this PDE numerically� See Duffie �����chapter �� H� for an introduction to
this technique and the book Willmott� Dewynne� and Howison ���� for an
extensive treatment and applications to option pricing� Note that the 	pric�
ing PDE
 contains two state variables� namely x and v� such that certain

�	 This PDE can be derived by an analogous argument as it is used in the derivation of the
PDE �
���

��



simple methods which are designed particularly for equations with only one
state variable cannot be applied to SV�models� As to a comparison of the
two approaches� according to Duffie �����p� ���� it can be said that 	for
problems involving one or two state variables it is typically the case that the
PDE�approach requires fewer computations than the Monte Carlo approach
to achieve the same accuracy
� whereas for higher dimensional problems the
Monte Carlo approach seems preferable�

���� Qualitative Properties of Option Values

We now collect evidence on the qualitative behaviour of option prices both
in stochastic volatility models and in a GARCH framework� The convergence
in distribution of GARCH models to continuous time SV models implies that
option values obtained in GARCH models converge to the option values one
would obtain in the limiting SV model��� Hence the qualitative behaviour of
option values in both classes of models is the same� Therefore we will not
distinguish between these types of models in this Section�

Generally speaking it can be said that the qualitative properties of option
values predicted by the SV�models are close to the qualitative properties of ob�
served option prices� In all SV�models we observe the smile pattern of implied
volatility� i�e� increasing the volatility of the volatility leads to rising implied
volatilities of in the money options and out of the money options whereas the
prices of at the money options remain �roughly� unchanged� In case that volatil�
ity innovations and asset returns are uncorrelated there is even a formal proof
of this observation which is due to Renault and Touzi ����� This interesting
paper also compares hedge ratios in the Black�Scholes model to hedge ratios
in SV�models� The authors 
nd that 	the usual hedging methods� through the
Black�Scholes model� lead to an underhedged �resp� overhedged� position for
in�the�money �resp� out of the money� options and a perfect partially hedged
position for at the money options�
 Heston ���� shows that SV�models can
explain the skew pattern of implied volatility� If the covariation between X and
v is negative # remember that this is the empirically relevant case # the left
tail of the return distribution is spread out� Hence put options with a relatively
low strike price rise in price� Option prices in SV�models seem to exhibit term
structure e�ect� the implied volatility of options with short time to maturity
reacts much stronger to changes in the current stock price volatility than does
the implied volatility of options with a relatively long time to maturity� Again
this behaviour is typical for the implied volatility of traded option contracts�

Duan ���� carries out an analysis similar in spirit to the IDV models of
section �� He determines the parameters of an NGARCH�model by minimizing

�
 The convergence of the models must of course take place under the martingale measures
Qn and Q used for the computation of option values� The convergence of the values of
put options� whose payo� is bounded� follows directly from the de�nition of convergence
in distribution� the convergence of call values is implied by the put�call�parity and the
convergence EQ

n

�Xn
T
� � EQ�XT � which in turn follows from the martingale property of

Xn and X and the assumed convergence of the initial values� Xn


� X
�

��



the distance between the option values predicted by the NGARCH model and
an observed implied volatility smile� He obtains a very good 
t� More impor�
tantly� the parameter values he obtains have the same order of magnitude than
the parameters one usually obtains by 
tting an NGARCH model directly to
the time series of the underlying asset price� In contrast to the IDV�models
the parameter values obtained by Duan are relatively stable over time� By
this we mean that the option prices predicted by a NGARCH model that has
been calibrated to an implied volatility smile prevailing one week before 
t the
current volatility smile reasonably well�

Duan�s paper is only a 
rst study and should therefore not be taken as a
rationale for claiming that SV�models are a better risk�management tool than
IDV�models� Clearly more testing of both models is called for before a de
ni�
tive statement of this type can be made� Also some care should be taking in
saying that 	stochastic volatility is the reason why we observe volatility smiles

or 	the correlation between stock price volatility and asset returns causes the
skew
 as there are other possible explanations such as jumps� transaction costs�
liquidity problems or even feedback e�ects from dynamic hedging� see Ghy�
sels� Harvey� and Renault ���� section ���� and Platen and Schweizer
����� Nonetheless the evidence compiled above suggests that SV�models are a
good description of 
nancial markets and might therefore help 
nancial insti�
tutions to deal with the volatility risk of derivative contracts in a reasonable
and consistent manner�
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Appendix

A� Proof of Proposition ���

Suppose that Q is an equivalent local martingale measure on FT and denote by
G the density martingale Gt � dQ�dP jFt � By the martingale representation
theorem we know that G can be written as stochastic integral

Gt �

Z t

�

���sdW��s �

Z t

�

���sdW��s

for progressively measurable integrands �� and ��� As Q and P are equivalent
G is strictly positive such that lnG is well de
ned� We get from It!o�s formula

��



lnGt � lnG� �

Z t

�

���s
Gs

dW��s �

Z t

�

���s
Gs

dW��s �

Z t

�



���s
Gs

��

�



���s
Gs

��

ds�

Hence G is of the form ���� with �t � ���t�Gt� It remains to show that
��t�Xt� vt� � ����t�Gt� Now we obtain from Girsanov�s theorem that X solves
under Q the SDE

dXt � ��t�Xt� vt�Xt



dWQ

��t �



��t�Xt� vt� �

���t
Gt

�
dt

�
�

Hence X is a Q�local martingale if and only if ��t�Xt� vt� � ����t�Gt�
Conversely� de
ne for � such that E�GT � � � the measureQ by dQ�dP jFT �

GT � Now it follows immediately from Girsanov�s theorem that �X� v� solves
the SDE ����� ���� under Q� hence X is a local Q�martingale�

B� Proof of Proposition ���

We will denote for � � R the equivalent martingale measure belonging to the
constant market price of risk process �t � � by Q� ��� Obviously it is enough
to show that

sup
��R

EQ� ��XT �K��jFt� � Xt and inf
��R

EQ� ��XT �K��jFt� � �Xt �K�� �

By the Markov property of �X� v� under Q� it is enough to consider the case
t � �� As the covariation between X and v vanishes the distribution of XT

conditional on the path followed by v is lognormal� and we get

EQ� ��XT �K��� �

Z
R�

CBS��� X�� ����
��d��� � ����

Here CBS��� X�� ��� is the Black�Scholes price of the option as given by ��� and

���� and �� denotes the distribution of the average variance �� � ��T � R T� vsds
under Q� � Inspection of the de
nition of CBS immediately yields that for all
x � �

lim
�	��

CBS��� x� ��� � x and lim
�	��

CBS��� x� ��� � �x�K�� � ����

Now the process v solves under Q� the SDE dvt � vt
�dt � vt
dW
Q�

��t � Hence
it equals

vt � v� exp�
�t� � exp�
WQ�

��t �
�

�

�t� �

The distribution of the second factor is independent of � # it is a geometric
Brownian motion with zero drift # and the 
rst factor obviously converges to
in
nity as � 	
� Hence for all M � � we have

�� The boundedness of the function � in Assumption ��� ensures that for bounded �t G

de�ned in ���� actually satis�es E�GT � � ��

��



lim
���

�� �M�
� � � � ����

Combining ����� ���� and ���� now immediately yields lim��� EQ� ��XT �
K��� � X�� Similarly we obtain that for every M � �

lim
����

����� ��M � � �

and hence lim���� EQ� ��XT �K��� � �X� �K���
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